GE Grid Solutions

<section-header>

Multilin 489

Economical protection, monitoring and metering for generators

The Multilin™ 489 Generator Protection System, a member of the SR family of relays, provides protection, control and advanced communications in a cost effective industry leading draw-out construction. Designed for small and medium sized generators, the 489 delivers advanced protection including generator stator differential protection. The 489 also includes detailed diagnostic information allowing for reduced troubleshooting time.

Key Benefits

- Complete, secure protection of small to medium sized generators
- Easy to use generator protection system supported by and industry leading suite of software tools.
- Advanced protection and monitoring features including the use of RTDs for stator and bearing thermal protection and Analog Inputs for vibration monitoring
- Global acceptance as a member of the most renown protection relay product family in the market.
- Draw-out construction allowing for minimized downtime and easy removal/installation of the 489 during maintenance routines
- Large, user-friendly front panel interface allowing for real-time power monitoring and setpoint access with a display that is easily readable in direct sunlight
- Enhanced generator troubleshooting through the use of IRIG-B time synchronized event records, waveform capturing, and data loggers
- Simplified setpoint verification testing using built in waveform simulation functionality
- Cost effective access to information through industry standard communication hardware (RS232, RS485, 10BaseT Ethernet) and protocols (Modbus RTU, Modbus TCP/IP, DNP 3.0)
- Available for use in most extreme harsh locations with the available Harsh Chemical Environment Option

Applications

- Synchronous or induction generators operating at 25Hz, 50Hz or 60Hz
- Primary or backup protection in cogeneration applications

Protection and Control

- Generator stator differential & 100%
 stator ground
- Loss of excitation & Overexcitation
- Distance backup
- Reverse power (anti-motoring)
- Ground directional overcurrent
- Inadvertent energization
- Breaker failure
- Stator and bearing thermal and vibration monitoring
- Negative sequence overcurrent

Communications

- Networking interfaces RS232, RS485, 10Mbps copper Ethernet
- Multiple protocols ModBus™ RTU, ModBus™ TCP/IP, DNP 3.0 Level 2

Monitoring & Metering

- Metering current, voltage, power, Energy, frequency, power factor
- Demand current, watts, vars, VA
- Temperature 12 RTD inputs
- Vibration and Speed 4 analog transducer inputs
- Oscillography 12 samples/ cycle up to 128 cycles in length
- Trending 8 parameters with up to a 5 second sample rate

EnerVista Software

- Document and software archiving toolset to keep information up to date
- Ease to use real time monitoring, control, and data archiving software available
- EnerVista Integrator providing easy integration of data in the 489 into new or existing monitoring and control systems

Protection and Control

The 489 Generator Protection System provides comprehensive protection, metering, and monitoring of small to medium sized synchronous or induction generators operating at 25, 50 or 60 Hz. The 489 is ideally suited for primary or backup generator protection as well as for use in cogeneration applications. Protection features found in the 489 include:

Generator Stator Differential

The 489 utilizes high-speed dual slope differential protection for detecting and clearing of stator phase faults. Advanced CT saturation detection algorithms maintain immunity to saturation conditions that may be caused due to external disturbances through the use of a directional check that provides additional supervision and ensures the fault is internal to the generator before triggering it to trip.

100% Stator Ground

100% stator ground fault protection is provided through an overvoltage element and an adaptive voltage differential feature responding to the unbalance of the third harmonic at the machine terminals and at the neutral point. The 489 compares the machine neutral voltage and ground current to determine if ground directional faults are within or outside the generator.

Backup Phase Distance

Two separate phase distance elements provide time-delayed backup protection for generator faults that have not otherwise been cleared by the primary system and generator protections. The distance characteristic can compensate for a unit delta/wye power transformer that is located between the generator and the end of the zone of protection.

Sensitive Directional Power

The 489 provides low forward power and reverse power elements to prevent generator motoring that can cause damage the prime mover. Independent settings for power pickup levels and operational delays are available for both alarming and tripping of each element.

Breaker Failure

The embedded breaker failure function in the 489 allows for improved system dependability without the additional cost of providing an independent breaker failure relay. Upon detection of a breaker failure condition, the 489 can be configured to operate one of its 4 available digital outputs to signal upstream devices to quickly isolate the fault.

Functional Block Diagram

ANSI Device Numbers & Functions

Device Number	Function					
12	Overspeed protection					
21P	Phase distance					
24	Volts/Hz					
27P	Phase undervoltage					
27/50	Accidental generator energization					
27TN/59N	100% stator earth fault					
32	Directional power					
38	Bearing overtemperature (RTD)					
39	Bearing vibration					
40	Loss of excitation					
46	Stator current unbalance					
47	Phase reversal					
49	Thermal overload					
50BF	Breaker failure					
50P	Phase instantaneous overcurrent					
50G	Ground instantaneous overcurrent					
51P	Phase time overcurrent					
51G	Ground time overcurrent					
51_2	Negative Sequence Time Overcurrent					
51V	Voltage restrained time overcurrent					
59P	Phase overvoltage					
67G	Ground directional overcurrent					
810	Overfrequency					
81U	Underfrequency					
86	Lockout					
87G	Generator differential					
VTFF	VT fuse failure					

Loss of Excitation

Generator loss of excitation protection is provided through two negative offset mho characteristics as per IEEEC37.102 and has independent pickup delay setting for each characteristic. The loss of excitation element will be blocked from tripping if a VT fuse fail condition is detected or if the Voltage Supervision characteristic is enable and the voltage is measured to be above the user defined level.

A negative mho element can be used to detect a loss of excitation of the generator

Stator Thermal Protection

The 489 provides thermal modeling overload protection to prevent generator damage caused by generator overheating. The thermal model algorithms incorporate current unbalance biasing and RTD biasing which provides accurate modeling of the actual generator temperature. The 489 can be configured to trip the generator offline when the generator's thermal limits are reached, or close an Alarm contact that signals operations personnel to take appropriate actions.

Bearing Overtemperature

Twelve RTD inputs are provided that may be configured to monitor and protect against bearing overtemperature conditions. The 489 provides the option for using RTD voting which requires that two RTDs simultaneously indicate an overtemperature condition before it will trip the generator offline. RTD voting provides additional security against tripping of generators when an invalid overtemperature signal is received from a malfunctioning RTD.

Negative Sequence Overcurrent

Rotor thermal protection is provided through monitoring of negative sequence current, which is a significant contributor to rotor heating, to ensure it does not increase above the generator's capability limits. The 489 provides a negative sequence definite time overcurrent alarm element and a negative sequence timed overcurrent curve tripping element to ensure the generator stays within it's short time and continuous negative sequence current rated limits.

Abnormal Frequency Protection

Operation of generators at off-nominal frequencies can have extremely detrimental effects on both the generator itself and the associated prime mover, in particular with steam turbine generators operating below normal frequency. The 489 provides overfrequency and underfrequency elements needed to provide protection of generators from operation at off-nominal frequencies. The 489 has alarm level settings to alert operations of abnormal frequency conditions as well as multiple trip levels that have independent tripping delay settings for each magnitude of abnormal frequency detected.

Overcurrent Backup

Three voltage restrained overcurrent elements provide backup protection for system faults. The pickup level for the inverse time curves of the overcurrent elements are adjusted in conjunction with the measured phase-to-phase voltage. This feature is provided to protect against prolonged generator contribution to a fault on the system.

Monitoring and Metering

The 489 includes high accuracy metering and recording for all AC signals. Voltage, current, frequency, power, energy, and demand metering are built into the relay as a standard feature. Current and voltage parameters are available as total RMS magnitude, and as fundamental frequency magnitude and angle. Metered values can be read from the relay using one of the available communications ports or on the relay's front panel display.

Event Recording

The 489 simplifies power generator troubleshooting by creating a sequence of events record that timestamps and logs events of internal relay operations and the operation of external devices connected to the relay's inputs. With each of the last 256 events the 489 stores, the relay will create a detailed event report that includes the time and date of the event, and the instantaneous value of all of the voltages, phase currents, and differential currents that were measured at the time the event occurred.

The negative sequence overcurrent element is adaptable to ensure negative sequence currents stay within the specific capability limits of a given generator

Analyze generator faults using waveforms that are captured at the time of generator faults or system instabilities

Oscillography

Postmortem analysis of generator faults can be performed using the waveform capture feature in the 489. The 489 samples the currents and voltages inputs at a rate of 12 times per cycle and can record records up to 128 cycles in length. The recorded waveforms can be retrieved and viewed using the EnerVista 489 Setup Software and allows users to examine the magnitudes and relationships of the measured signals at the time of the fault.

IRIG-B Time Synchronization

The 489 supports receiving an input from an IRIG-B time synchronization clock that will synchronize the 489 internal clock with other devices found in the substation or distributed across the power system. IRIG-B time synchronization will provide timestamping of events in the Event Record with 1ms accuracy thereby providing a means of accurately determining the sequence of operation of events that occurred across multiple devices in the power system.

Simulation Mode

The 489 has a built in simulation feature that allows for testing the functionality and relay response to programmed conditions without the need for external inputs. When placed in simulation mode the 489 suspends reading of the actual inputs and substitutes them with the simulated values. Pre-trip, fault, and post fault states can be simulated, with currents, voltages, system frequency, RTD temperatures, and analog inputs configurable for each state.

Automation

The 489 offers a multitude of different analog and digital inputs and outputs to allow the 489 to be seamlessly integrated into most generator automation schemes.

Outputs Relays

The 489 provides six output contacts for the purpose of controlling or signaling other devices and operations personnel. Protection elements can be configured to control the Trip contact, the Alarm contact, or the 3 Auxiliary contacts whenever the element operates. The status of each of these contact are also displayed on LEDs found on the relays front panel.

Digital Inputs

Eight digital inputs are available for monitoring the status of external contacts, tachometers, or control switches. With these inputs, the relay can identify the status of the associated breakers and receive commands from operational staff such as controlling the output relays, resetting the thermal limits, or triggering a waveform capture.

RTD Inputs

Twelve RTD inputs allow the 489 to monitor both the generator stator and bearing temperature. A built in voting feature adds additional security by ensuring that two RTDs monitoring the same device both detect the overtemperature condition before tripping the generator offline.

Analog Inputs

Four analog inputs are available for providing protection and monitoring of generator bearing vibration. The analog inputs are field programmable to measure transducer signals that operator over a range of 0 to 1 mA, 0 to 20 mA, or 4 to 20 mA.

Analog Outputs

Four analog outputs are available for signaling the value of measured analog quantities to external process control devices such as PLCs. The analog outputs can be ordered to operate over a 4 to 20mA range or a 0 to 1mA range and can be configured to signal a representation of most analog quantities measured by the 489 including currents, voltages, frequency, RTD temperature, power and demand.

Communications

The 489 provides advanced communications technologies for remote data and engineering access, making it easy and flexible to use and integrate into new or existing monitoring and control systems. Multiple communication ports are available including a front panel RS232 serial port for easy local computer access, two RS485 serial ports and a 10Mbps copper Ethernet port that provide direct integration in most communications architectures.

The 489 supports the most popular industry standard protocols enabling easy, direct integration into most DCS and SCADA systems. Protocols supported include:

- Modbus RTU
- Modbus TCP/IP
- DNP 3.0 Level 2

User Interfaces

Keypad and Display

The 489 has a keypad and 40 character display for local monitoring and relay configuration without the need for a computer. Up to 20 userselected default messages can be displayed when the relay is protecting the generator. In the event of a trip, or an alarm, the display will automatically default to the proper message indicating the cause of the operation.

LED Indicators

The 489 front panel features 22 LED indicators that provide a quick indication of 489 status, generator status, and output relay status.

EnerVista Software

The EnerVista Suite is an industry-leading set of software programs that simplify every aspect of using the 489 relay. The EnerVista suite provides all the tools to monitor the status of your protected asset, maintain the relay and integrate information measured by the 489 into DCS or SCADA monitoring systems. Convenient COMTRADE and Sequence of Events viewers are an integral part of the 489 Setup software included with every relay to carry out postmortem event analysis.

EnerVista Launchpad

EnerVista Launchpad is a powerful software package that provides users with all of the setup and support tools needed for configuring and maintaining Multilin products. The setup software within Launchpad allows configuring devices in real-time by communicating using serial, Ethernet, or modem connections, or offline by creating setting files to be sent to devices at a later time. Included in Launchpad is a document archiving and management system that ensures critical documentation is up-to-date and available when needed. Documents made available include:

- Manuals
- Application Notes
- Guideform Specifications
- Brochures
- Wiring Diagrams
- FAQs
- Service Bulletins

Retrofit Existing Multilin SR 489 Devices in Minutes

Traditionally, retrofitting or upgrading an existing relay has been a challenging and time consuming task often requiring re-engineering, panel modifications, and re-wiring. The Multilin 8 Series Retrofit Kit provides a quick, 3-step solution to upgrade previously installed Multilin SR 489 protection relays, reducing upgrade costs.

With the new 8 Series Retrofit Kit, users are able to install a new 889 Generator Protection System without modifying existing panel or switchgear cutouts, re-wiring, or need for drawing changes and re-engineering time and cost.

With this three-step process, operators are able to upgrade existing SR relays in as fast as 21 minutes, simplifying maintenance procedures and reducing system downtime.

EnerVista 8 Series Setup Software provides automated setting file conversion with graphical report to quickly and easily verify settings and identify any specific settings that may need attention.

Simply remove the upper, lower and low voltage terminal blocks and then remove the SR chassis from the panel. No need to disconnect any of the field wiring.

Insert the new 8 Series Retrofit chassis into the switchgear and simply plug-in the old terminal blocks - there is need to make any cut-out modifications or push and pull cables.

The 8 Series Retrofit Kit comes factory assembled and tested as a complete unit with the 8 Series protection device and includes replacement hardware (terminal blocks and screws) if the existing hardware is significantly aged or damaged.

Explore in Detail

visit us online to explore the SR to 8 Series retrofit kit in detail using our interactive app. www.GEGridSolutions.com/8SeriesRetrofitKit

Multilin 8 Series Retrofit: Solutions Explorer Application

Viewpoint Monitoring

Viewpoint Monitoring is a simple-to-use and full-featured monitoring and data recording software package for small systems. Viewpoint Monitoring provides a complete HMI package with the following functionality:

- Plug & Play Device Monitoring
- System Single-Line Monitoring & Control
- Annunciator Alarm Screens
- Trending Reports
- Automatic Event Retrieval
- Automatic Waveform Retrieval

Viewpoint Maintenance

Viewpoint Maintenance provides tools that will create reports on the operating status of the relay, simplify the steps to download fault and event data, and reduce the work required for cyber-security compliance audits. Tools available in Viewpoint Maintenance include:

- Settings Security Audit Report
- Device Health Report
- Single Click Fault Data Retrieval

EnerVista Integrator

EnerVista Integrator is a toolkit that allows seamless integration of Multilin devices into new or existing automation systems. Included in EnerVista Integrator is:

- OPC/DDE Server
- Multilin Drivers
- Automatic Event Retrieval
- Automatic Waveform Retrieval

Features

489 FRONT

Technical Specifications

DROTECTION	
PROTECTION	
OVERCURRENT ALA	
Pick-up Level:	0.10 to 1.50 x FLA in steps of 0.01 aver-
	age phase current
Time Delay:	0.1 to 250.0 s in steps of 0.1
Pickup Accuracy:	as per Phase Current Inputs
Timing Accuracy:	±100 ms or ±0.5% of total time
OFFLINE OVERCURE	
Pick-up Level:	0.05 to 1.00 x CT in steps of 0.01 of any
	one phase 3 to 99 cycles in steps of 1
Time Delay:	3 to 99 cycles in steps of 1
Pickup Accuracy:	as per Phase Current Inputs
Timing Accuracy:	+50ms at 50/60 Hz
INADVERTENT ENER	GIZATION
Arming Signal:	undervoltage and/or offline from
, in the good state	breaker status 0.05 to 3.00 × CT in steps of 0.01 of any
Pick-up Level:	0.05 to 3.00 x CT in steps of 0.01 of any
Tiek up Level.	one phase
Time Deley	
Time Delay:	no intentional delay
Pickup Accuracy:	as per Phase Current Inputs
Timing Accuracy:	+50 ms at 50/60 Hz
Timing Accuracy: PHASE OVERCURRE	NT
Voltage Restraint:	Programmable fixed characteristic
Pick-up Level:	0.15 to 20.00 x CT in steps of 0.01 of
	any one phase
Curve Shapes:	any one phase ANSI, IEC, IAC, Flexcurve, Definite Time
ea.ve onapes.	Definite Time
Timo Dolau:	0.000 to 100.000 s in steps of 0.001
Time Delay:	0.000 to 100.000 S IN Steps of 0.001
Pickup Accuracy:	as per Phase Current Inputs
Timing Accuracy:	+50 ms at 50/60 Hz or
	±0.5% total time
NEGATIVE SEQUENC	CE OVERCURRENT
Pickup Level:	3 to 100% FLA in steps of 1
Curve Shapes:	I2 ² t trip defined by k,
	definite time alarm
Time Delay:	0.1 to 100.0 s in steps of 0.1
	as per Phase Current Inputs
Pickup Accuracy:	100me es + 0.5% eftetel time
Timing Accuracy:	± 100 ms or $\pm 0.5\%$ of total time
GROUND OVERCUR	RENT
Pickup Level:	0.05 to 20.00 x CT in steps of 0.01
Curve Shapes:	0.05 to 20.00 x CT in steps of 0.01 ANSI, IEC, IAC, Flexcurve, Definite Time
	Definite Time
Time Delay:	0.00 to 100.00 s in steps of 0.01
Pickup Accuracy:	as per Ground Current Input
Timing Accuracy:	+50 ms at 50/60 Hz
Tilling Accuracy.	or ±0.5% total time
PHASE DIFFERENTIA	
PHASE DIFFERENTIA	
Pickup Level: Curve Shapes:	0.05 to 1.00 x CT in steps of 0.01
	Dual Slope
Time Delay:	0 to 100 cycles in steps of 1
Pickup Accuracy:	as per Phase Current Inputs
Timing Accuracy:	+50 ms at 50/60 Hz or
	±0.5% total time
GROUND DIRECTION	
Pickup Level:	0.05 to 20.00 x CT in steps of 0.01
Time Delay:	0.1 to 120.0 s in steps of 0.1
Pickup Accuracy:	as per Phase Current Inputs
Timing Accuracy:	±100 ms or ±0.5% of total time
HIGH-SET PHASE OV	
Dialum Laugh	0.15 to 20.00 + CT in stone of 0.01
Pickup Level:	0.15 to 20.00 x CT in steps of 0.01 0.00 to 100.00 s in steps of 0.01
Time Delay:	0.00 to 100.00 s in steps of 0.01
Pickup Accuracy:	as per Phase Current Inputs
Timing Accuracy:	±50 ms at 50/60 Hz or
	±0.5% total time
UNDERVOLTAGE	
Pickup Level:	0.50 to 0.99 x rated V in steps of 0.01
Curve Shapes:	Inverse Time, definite time alarm 1
Time Delay:	0.2 to 120.0 s in steps of 0.1
Pickup Accuracy:	as per Voltage Inputs
Timing Accuracy:	±100 ms or ±0.5% of total time
Elements:	Trip and Alarm
PROTECTION OVERVOLTAGE	
OVERVOLTAGE	
Pick-up Level:	1.01 to 1.50 x rated V in steps of 0.01
Curve Shapes:	Inverse Time, definite time alarm
Time Delay:	0.2 to 120.0 s in steps of 0.1
Pickup Accuracy:	as per Voltage Inputs
Timing Accuracy:	
Timing Accuracy: VOLTS/HERTZ	±100 ms or ±0.5% of total time
VOLIS/HERIZ	1.00 to 1.99 v pomingl

1.00 to 1.99 x nominal in steps of 0.01 Inverse Time, definite time alarm 0.1 to 120.0 s in steps of 0.1 as per voltage inputs ±100 ms at 7.1.2 x Pickup ±300 ms at < 1.2 ' Pickup

VOLTAGE PHASE REVERSAL Configuration: ABC or ACB phase rotation Timing Accuracy: UNDERFREQUENCY Required Voltage: 200 to 400 ms 0.50 to 0.99 × rated voltage in Phase A 0 to 5 sec. in steps of 1 20.00 to 60.00 in steps of 0.01 Block From Online: Pickup Level: Curve Shapes: 1 level alarm, two level trip definite time 0.1 to 5000.0 sec. in steps of 0.1 Time Delay: Pickup Accuracy: Timing Accuracy: OVERFREQUENCY ±0.02 Hz ±100 ms or ±0.5% of total time 0.50 to 0.99 x rated voltage in Required Voltage: 0.50 to 0.99 x rated voitage in Phase A 0 to 5 sec. in steps of 1 25.01 to 70.00 in steps of 0.01 1 level alarm, 2 level trip definite time 0.1 to 5000.0 s in steps of 0.1 Block From Online: Pickup Level: Curve Shapes: Time Delay Pickup Accuracy: ±0.02 Hz Timing Accuracy: ±0.02 Hz 100 ms or ±0.5% of total time NEUTRAL OVERVOLTAGE (FUNDAMENTAL) 2.0 to 100.0 V secondary in steps of 0.01 Pick-up Level: steps of 0.01 Time Delay: 0.1 to 120.0 s in steps of 0.1 Pickup Accuracy: as per Neutral Voltage Input Timing Accuracy: ±100 ms or ±0.5% of total time NEUTRAL UNDERVOLTAGE (3RD HARMONIC) Blocking Signals: delta 0.5 to 20.0 V secondary in steps Pickup Level: of 0.01 if open delta VT; adaptive if wve VT Time Delay: 5 to 120 s in steps of 1 Tickup Accuracy: at ≤ 20.0 V secondary: as per Neut Timing Accuracy: ±3.0 s LOSS OF EXCITATION (IMPEDANCE) as per Neutral Voltage Input 2.5 to $300.0\,\Omega$ secondary in steps of 0.1 with adjustable impedance offset 0.1 to 10.0 s in steps of 0.1 Pickup Level: Time Delay: Pickup Accuracy: as per Voltage and Phase Current ±100 ms or ±0.5% of total time Timing Accuracy: DISTANCE (IMPEDANCE) Pickup Levels: 0.1 to 500.0 Ω secondary in steps of 0.1 50 to 85° reach in steps of 1 Time Delay: Pickup Accuracy: 0.0 to 150.0 s in steps of 0.1 as per Voltage and Phase Current Innuts Timing Accuracy: 150 ms ±50 ms or ±0.5% of total time PROTECTION REACTIVE POWER 0 to 5000 s in steps of 1 0.02 to 1.50 x rated Mvar (positive and negative) 0.2 to 120.0 s in steps of 0.1 Block From Online: Pickup Level: Time Delay: Pickup Accuracy: Timing Accuracy: REVERSE POWER ±100ms or ±0.5% of total time 0 to 5000 s in steps of 1 0.02 to 0.99 x roted MW 0.2 to 120.0 s in steps of 0.1 see power metering Block From Online: Pickup Level: Time Delay: Pickup Accuracy: ±100 ms or ±0.5% of total time Timing Accuracy: LOW FORWARD POWER Block From Online: 0 to 15000 s in steps of 1 0.02 to 0.99 x rated MW Pickup Level: Time Delay: Pickup Accuracy: 0.2 to 120.0 s in steps of 0.1 see power metering ±100 ms or ±0.5% of total time Timing Accuracy: PULSE OUTPUT Parameters: + kwh, +kvarh, -kvarh 1 to 50000 in steps of 1 200 to 1000 ms in steps of 1 ms RTDS Interval: Pulse Width: 1 to 250°C in steps of 1 2°C Pickup: Pickup Hysteresis: 3 sec. Time Delay: OVERLOAD / STALL PROTECTION / THERMAL MODEL Overload Curves: 15 Standard Overload Curves Custom Curve

Voltage Dependent Custom Curve Phase Unbalance Hot/Cold Curve Ratio Stator RTD Curve Biasing: Online Cooling Rate Offline Cooling Rate Line Voltage 1.01 to 1.25 Overload Pickup Pickup Accuracy: Timing Accuracy: as per Phase Current Inputs ±100 ms or ±2% of total time

DIGITAL INPUT GENERAL INPUT A TO G (DIGITAL INPUT)						
Configurable:			tal Inputs 1 to 7			
Time Delay:		0.1 to 5000.0 s in steps of 0.1 0 to 5000 s in steps of 1				
Block From On						
Timing Accura			5% of total time			
SEQUENTIAL T			Valkal Japanka 1 ka 7			
Configurable:		Assignable to Digital Inputs 1 to 7 0.02 to 0.99 x rated MW in steps of 0.01				
Pickup Level:	0.02	2 to 0.99 X R	ated MW in steps of	0.01		
Time Delau	LOW	/ FOI WOLD P	ower / Reverse' Powe n steps of 0.1	31		
Time Delay: Pickup Accura		power met				
Timing Accura			5% of total time			
FIELD BREAKE						
Configurable:			pigital Inputs 1 to 7			
Time Delay:			steps of 0.1			
Timing Accura			5% of total time			
TACHOMETER						
Configurable:			igital Inputs 4 to 7			
RPM Measurer		to 7200 RP				
Duty Cycle of I						
Pickup Level:			ted speed in steps			
Time Delay:		250 s in ste				
Timing Accura	cy: ±0.5	5 s or ±0.5%	of total time			
-	-					
ANALOG INPU	TS					
PHASE CURRE						
CT Primary:		50000 A				
CT Secondary:			pe specified with ord	ler)		
Conversion Ro		0.02 to 20 x CT				
Accuracy:		2 × CT: ±0.59				
at > 2 × CT: ±1% of 20 × CT						
Burden:			at rated load			
CT Withstand:			mes rated current			
	2 Sec		times rated current			
continuous at 3 times rated current						
CROUND CUR	conti	nuous at 3 t	imes rated current			
GROUND CUR	conti RENT INPUT	nuous at 3 t 'S				
CT Primary:	conti RENT INPUT 10 to	nuous at 3 t 'S 10000 A (1	A / 5 A CTs)			
CT Primary: CT Secondary:	conti RENT INPUT 10 to 1 A /	nuous at 3 t 'S 10000 A (1 5 A or 50:0.0	A / 5 A CTs))25 (HGF CTs))		
CT Primary:	conti RENT INPUT 10 to 1 A / Inge: 0.021	nuous at 3 t S 10000 A (1 5 A or 50:0.0 to 20 x CT fo	A / 5 A CTs) 025 (HGF CTs) or 1 A / 5 A CTs 0.0 to)		
CT Primary: CT Secondary: Conversion Ro	conti RENT INPUT 10 to 1 A / inge: 0.02 t 100 A	nuous at 3 t 10000 A (1 5 A or 50:0.0 to 20 × CT fo A pri. for 50:0	A / 5 A CTs))25 (HGF CTs))		
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT	conti RENT INPUT 10 to 1 A / inge: 0.02 f 100 A ± 0.1	nuous at 3 t 5 10000 A (1 5 A or 50:0.0 to 20 × CT fo A pri. for 50:0 A at < 10 A	A / 5 A CTs) 025 (HGF CTs) or 1 A / 5 A CTs 0.0 to 0.025 CTs(HGF))		
CT Primary: CT Secondary: Conversion Ro	conti RENT INPUT 10 to 1 A / inge: 0.02 t 100 A ± 0.1 ± 1.0	nuous at 3 t 10000 A (1 5 A or 50:0.0 to 20 × CT fc A pri. for 50:0 A at < 10 A A at ³ 10 to	A / 5 A CTs) 225 (HGF CTs) or 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy:	conti RENT INPUT 10 to 1 A / inge: 0.02 t 100 A ± 0.1 ± 1.0 ot < 2	nuous at 3 t 10000 A (1 5 A or 50:0.0 to 20 × CT fc A pri. for 50:0 A at < 10 A A at ³ 10 to	A / 5 A CTs) 025 (HGF CTs) or 1 A / 5 A CTs 0.0 to 0.025 CTs(HGF)			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy: 1A/5A CT	conti RENT INPUT 10 to 1 A / inge: 0.02 t 100 A ± 0.1 ± 1.0 ot < 2	nuous at 3 t 10000 A (1 5 A or 50:0.0 to 20 × CT fo A pri. for 50:0 A at < 10 A A at ³ 10 to 2 × CT: ±0.5%	A / 5 A CTs) 225 (HGF CTs) or 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy: 1A/5A CT Accuracy:	conti RENT INPUT 10 to 1 A / inge: 0.02 i 100 A ± 0.1 ± 1.0 at < 2 ±1%	nuous at 3 t S 10000 A (1 5 A or 50:0.0 to 20 x CT fc A at < 10 A A at 3 10 to 2 x CT: ±0.59 of 20 x CT	A / 5 A CTs) 225 (HGF CTs) or 1 A / 5 A CTs 0.0 to 0.025 CTs(HGF) 100 A 6 of 2 x CTat > 2 x CT			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy: 1A/5A CT	conti RENT INPUT 10 to 1 A / inge: 0.02 t 100 A ± 0.1 ± 1.0 ot < 2	nuous at 3 t \$ 10000 A (1 5 A or 50:0.0 to 20 x CT fo A pri. for 50:0 A at 3 10 to 2 x CT: ±0.59 of 20 x CT Bl	A / 5 A CTs) 225 (HGF CTs) or 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy: 1A/5A CT Accuracy:	conti RENT INPUT 10 to 1 A / inge: 0.02 i 100 A ± 0.1 ± 1.0 at < 2 ±1%	nuous at 3 t S 10000 A (1 5 A or 50:0.0 to 20 x CT fc A at < 10 A A at 3 10 to 2 x CT: ±0.59 of 20 x CT	A / 5 A CTs) 225 (HGF CTs) or 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 x CTat > 2 x CT JRDEN			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy: 1A/5A CT Accuracy: GROUND CT	conti RENT INPUT 10 to 1 A / inge: 0.02 + 100 A ± 0.1 ± 1.0 ot < 2 ±1%	nuous at 3 t S 10000 A (1 5 A or 50:0.(to 20 x CT fc A pri. for 50:(A at < 10 A A at 3 10 to 2 x CT: ±0.59 of 20 x CT BI VA	A / 5 A CTs) 225 (HGF CTs) or 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 x CTat > 2 x CT JRDEN 0.024			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy: 1A/5A CT Accuracy: GROUND CT	conti RENT INPUT 10 to 1 A / inge: 0.02 100 A ± 0.1 ± 1.0 ot < 2 ±1%	nuous at 3 t 'S 10000 A (1 5 A or 50:0.0 A (1 5 A or 50:0.0 A 0 A ot 3 10 to 2 x CT: ±0.59 of 20 x CT BI VA 0.024	A / 5 A CTs) 225 (HGF CTs) or 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 x CTat > 2 x CT JRDEN Ω			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy: 1A/5A CT Accuracy: GROUND CT	conti RENT INPUT 10 to 1 A / inge: 0.02 i 100 A ± 0.1 ± 1.0 ot < 2 ±1% INPUT 1 A 5 A	nuous at 3 t 'S 10000 A (1 5 A or 50:0.0 4 pri, for 50:0.0 A at < 10 A A at 3 10 to 2 x CT ±0.59 of 20 x CT BI VA 0.024 0.605 9.809 0.057	A / 5 A CTs) 225 (HGF CTs) 127 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 × CTat > 2 × CT <u>JRDEN</u> 0.024 0.024 0.024 0.024 90.7			
CT Primary: CT Secondary: Conversion Re 50:0.025 CT Accuracy: 1A/5A CT Accuracy: GROUND CT 1A/5A	conti RENT INPUT 10 to 1 A / inge: 0.02 + 100 A ± 0.1 ± 1.0 at < 2 ±1% INPUT 1 A 5 A 20 A	nuous at 3 t 'S 10000 A (1 5 A or 50:0.0 to 20 x CT fc A or 5 (10 A or 50:0.0 A ot < 10 A A at < 10 A A at < 10 A A at < 10 A A at < 10 A CT: ±0.59 of 20 x CT BI VA 0.024 0.605 9.809	A / 5 A CTs) 225 (HGF CTs) yr 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 x CTat > 2 x CT JRDEN 0.024 0.024			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy: 1A/SA CT Accuracy: GROUND CT 1A/SA 50:0.025	conti RENT INPUT 10 to 1 A / inge: 0.02 ± 100 A ± 0.1 ± 1.0 ot <2 ±1% INPUT 1 A 5 A 20 A 0.025 A	nuous at 3 t 'S 10000 A (1 5 A or 50:0.0 4 pri, for 50:0.0 A at < 10 A A at 3 10 to 2 x CT ±0.59 of 20 x CT BI VA 0.024 0.605 9.809 0.057	A / 5 A CTs) 225 (HGF CTs) 127 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 × CTat > 2 × CT <u>JRDEN</u> 0.024 0.024 0.024 0.024 90.7			
CT Primary: CT Secondary; Conversion Rc 50:0.025 CT Accurracy: IA/5A CT Accuracy: GROUND CT IA/5A 50:0.025 HGF	conti RENT INPUT 10 to 1 A / 100 A ± 0.1 ± 1.0 0 at < 2 ±1% INPUT 1 A 5 A 20 A 0.025 A 0.1 A	nuous at 3 t 10000 A [1 5 A or 50:0.0 0 20 x CT f6 yri, for 50:1 A at 3 10 to 2 x CT: ±0.59 of 20 x CT BI VA 0.024 0.605 9.809 0.057 0.634 18.9	A / 5 A CTs) 225 (HGF CTs) or 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 x CTat > 2 x CT			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy: 1A/5A CT Accuracy: GROUND CT 1A/5A 50:0.025 HGF	conti RENT INPUT 10 to 1 A / inge: 0.22 / 100 A ± 0.1 ± 1.0 ot < 2 100 A ± 1.0 ot < 2 100 A 0.025 A 0.5 A	nuous at 3 t S 10000 A (1 5 A or 50:0.0 20 x CT fc A pri. for 50:0 A at < 10 A A at < 10 A A at < 10 A A at < 10 C X CT: ±0.59 of 20 x CT BI VA 0.024 0.605 9.809 0.057 0.634 18.9 WITHSTAN	A / 5 A CTs) 225 (HGF CTs) yr 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 x CTat > 2 x CT			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy: 1A/5A CT Accuracy: 1A/5A CT 1A/5A S0:0.025 HGF GROUND CT CT	Conti RENT INPUT 10 to 1 A / inge: 0.22 100 / ± 0.1 ± 1.0 ot < 2 ±1% INPUT 1 A 5 A 20 A 0.025 A 0.1A 0.5 A	nuous at 3 t 10000 A (1 5 A or 50:0.0 0 20 x CT f6 pri, for 50:1 A at 3 10 to 2 x CT ± 0.59 of 20 x CT BI VA 0.024 0.605 9.809 0.057 0.634 18.9 WITHSTAN 2 SEC.	A / 5 A CTs) 225 (HGF CTs) 12 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 × CTat > 2 × CT JRDEN 0.024 0.0			
CT Primary: CT Secondary: Conversion Re 50:0.025 CT Accuracy: 1A/5A CT Accuracy: GROUND CT 1A/5A 50:0.025 HGF GROUND CT CT IA/5A	conti RENT INPUT 10 to 1 A / 100 A ± 0.1 ± 1.0 ot < 2 ± 1% INPUT 1A 5A 20 A 0.025 A 0.1A 0.5 A 1 SEC 80 × CT	Nucus at 3 t 10000 A (1 5 A or 50:0.0 20 x C T f A pri. for 50:0 A at < 10 A A at 3 10 to x CT : ±0.59 of 20 x CT BI VA 0.024 0.605 0.634 18.9 WITHSTAN 2 SEC. 40 x CT	A / 5 A CTs) 225 (HGF CTs) or 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 x CTat > 2 x CT JRDEN 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.027 75.6 D TIME CONTINUOUS 3 x CT			
CT Primary: CT Secondary: Conversion Rc 50:0.025 CT Accuracy: 1A/5A CT Accuracy: 1A/5A CT 1A/5A S0:0.025 HGF GROUND CT CT	Conti RENT INPUT 10 to 1 A / inge: 0.22 100 / ± 0.1 ± 1.0 ot < 2 ±1% INPUT 1 A 5 A 20 A 0.025 A 0.1A 0.5 A	nuous at 3 t 10000 A (1 5 A or 50:0.0 0 20 x CT f6 pri, for 50:1 A at 3 10 to 2 x CT ± 0.59 of 20 x CT BI VA 0.024 0.605 9.809 0.057 0.634 18.9 WITHSTAN 2 SEC.	A / 5 A CTs) 225 (HGF CTs) 12 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 × CTat > 2 × CT JRDEN 0.024 0.0			
CT Primary: CT Secondary; Conversion Rc 50:0.025 CT Accurracy: IA/5A CT Accuracy: GROUND CT IA/5A 50:0.025 HGF GROUND CT CT IA/5A 50:0.025 HGF	Conti RENT INPUT 10 to 10 to 10 0/ 100 / ± 0.1 ± 1.0 0 / ± 1.0 0 / ± 1.0 0 / 1 A 5 A 20 A 0.1 A 0.025 A 0.	Nucus at 3 t 10000 A (1 5 A or 50:0.0 20 x C T f A pri. for 50:0 A at < 10 A A at 3 10 to x CT : ±0.59 of 20 x CT BI VA 0.024 0.605 0.634 18.9 WITHSTAN 2 SEC. 40 x CT	A / 5 A CTs) 225 (HGF CTs) or 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 x CTat > 2 x CT JRDEN 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.027 75.6 D TIME CONTINUOUS 3 x CT			
CT Primary: CT Secondary: Conversion Re 50:0.025 CT Accuracy: 1A/5A CT Accuracy: GROUND CT 1A/5A 50:0.025 HGF GROUND CT CT IA/5A	Conti RENT INPUT 10 to 1 A / 100 A ± 0.1 ± 1.0 0 A ± 0.1 ± 1.0 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0	nuous at 3 t S 10000 A (1 S A or 50:0.0 0 2 N CT ff A pri. for 50:0 A at < 10 A A at < 10 A A at < 3 10 to X CT : ±0.59 of 20 × CT BI VA 0.024 0.605 9.809 0.057 0.634 18.9 WITHSTAN 2 SEC. 40 x CT N/A	A / 5 A CTs) 225 (HGF CTs) or 1 A / 5 A CTs 0.0 tc 0.025 CTs(HGF) 100 A 6 of 2 x CTat > 2 x CT JRDEN 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.027 75.6 D TIME CONTINUOUS 3 x CT			

VT Ratio: VT Secondary: Conversion Range: Accuracy: Max. Continuous:	1.00 to 240.00:1 in steps of 0.01 200 V AC (full-scale) 0.02 to 1.00 x Full Scale ±0.5% of Full Scale 280 V AC
Burden: NEUTRAL VOLTAGE	> 500 KΩ
VT Ratio:	1.00 to 240.00:1 in steps of 0.01 100 V AC (full-scale)
VT Secondary: Conversion Range:	0.005 to 1.00 x Full Scale
Accuracy:	±0.5% of Full Scale
Max. Continuous:	280 V AC
Burden:	> 500 KΩ
DIGITAL INPUTS	
Inputs:	9 opto-isolated inputs
External Switch:	dry contact < 400 Ω
489 Sensor Supply:	+24 V DC at 20 mA maximum
ANALOG TRANSDUC	
Current Inputs:	0 to 1 mA, 0 to 20mA or 4 to
to a status a status a	20 mA (setpoint)
Input Impedance:	226Ω ±10%
Conversion Range:	0 to 21 mA
Accuracy:	±1% of full scale
Туре:	passive
Analog In Supply:	+24 V DC at 100 mA maximum
Sampling Interval	50 ms

Pick-up Level:

Curve Shapes:

Time Delay: Pickup Accuracy:

Timing Accuracy:

Technical Specifications (continued)

INPUTS	
RTD INPUTS	
RTD (3 wire Types):	100 Ω Platinum
,	100 Ω Nickel, 120 Ω Nickel
	10 Ω Copper
RTD Sensing	TO 12 CODDEI
	E wa A
Current:	5mA
Isolation:	36 Vpk (isolated with analog inputs and
	outputs)
Range:	-50 to +250°C
Accuracy:	+2°C for Platinum and Nickel +5°C for
	Copper
Lead Resistance:	25Ω Max per lead for Pt and Ni type 3Ω
Lead Resistance.	Max per lead for Cu type
No Concern	
No Sensor:	
Short/Low Alarm:	<-50°C
TRIP COIL SUPERVIS	
Applicable Voltage:	20 to 300 V DC / V AC
Trickle Current:	2 to 5 mA

OUTPUTS							
ANALOG OL	JTPUTS						
Туре:		ctive					
Range:		ito 20 m ith orde/		mA (mu	st be spec	ified	
Accuracy:		1% of fu					
Maximum		4 to 20 mA input: 1200,					
Load: Isolation:			input: 10) k			
OUTPUT RE		6 Vpk					
Configurati	on: 6			al Form	С		
Contact Ma			У				
Operate Tin Max ratings		0 ms	tions				
	101 10000						
VOLTAGE		M/C	M/C 0.2	BREAK			
DC.	30 VDC	CONT. 10 A	SEC 30A	10 A	LOAD 300 W		
Resistive	125 VDC	10 A	30A	0.5 A	62.5 W		
	250 VDC	10 A	30A	0.3 A	75 W		
DC	30 VDC	10 A	30A	5 A	150 W		
Inductive L/R= 40 ms	125 VDC 250 VDC	10 A 10 A	30A 30A	0.25 A 0.15 A	31.3 W 37.5 W		
AC	120 VAC	10 A	30A	10 A	2770 VA	1	
Resistive	250 VAC	10 A	30A	10 A	2770 VA		
AC Inductive	120 VAC 250 VAC	10 A 10 A	30A 30A	4 A 3 A	480 VA 750 VA		
P.F. = 0.4	2 JU VAC	TOA	JUA	JA	7 50 VA		

POWER SUPPLY			
CONTROL POWER			
LO Range:	.O / HI must be specified with order) DC: 20 to 60 V DC		
Hi Range:	AC: 20 to 48 V AC at 48 to 62 Hz DC: 90 to 300 V DC AC: 70 to 265 V AC at 48 to 62 Hz		
Power:	45 VA (max), 25 VA typical		
AC ANALOG INPUTS F	REQUENCY TRACKING		
	Va for wye, Vab for open delta		
	6 V minimum, 10 Hz/sec.		
COMMUNICATIONS			
	Front Panel, non-isolated		
	Isolated together at 36 Vpk		
	485: 300 - 19,200 Baud		
RS	232: 9600 Baud		
Parity: No	one, Odd, Even		
	Mbbs Copper RJ45		
	dbus® RTU / Modbus® TCP/IP DNP		
3.0	Level 2		
ENVIRONMENTAL			
Temperature Range:			
Operating:	-40 °C to +60 °C		
Ambient Storage:	-40 °C to +85 °C		
Ambient Shipping:			
Humidity:	Operating up to 95% (non condensing)		
	@ 55C		
Altitude:	Up to 2000 m		
Pollution degree:	2		
PRODUCT TESTS			
Thermal Cycling:	Operational test at ambient, reducing to -40°C and then		
Dielectric Strength:	increasing to 60°C 2.0 kV for 1 minute from relays,		
	CTs, VTs, power supply to Safety Ground		

TYPE TESTS	
Dielectric voltage withstand:	EN60255-5
Impulse voltage withstand:	EN60255-5
Insulation resistance:	EN60255-5
Damped Oscillatory:	IEC 61000-4-18,
	IEC 60255-22-1
Electrostatic Discharge:	EN61000-4-2,
	IEC 60255-22-2
RF immunity:	EN61000-4-3,
	IEC 60255-22-3
Fast Transient Disturbance:	EN61000-4-4,
	IEC 60255-22-4
Surge Immunity:	EN61000-4-5,
	IEC 60255-22-5
Conducted RF Immunity:	EN61000-4-6,
De dista de Constante d	IEC 60255-22-6
Radiated & Conducted Emissions:	CISPR11, CISPR22, IFC 60255-25
Sinusoidal Vibration:	IEC 60255-25
	IEC 60255-21-1
Power magnetic Immunity: Voltage Dip & interruption:	IEC 61000-4-11
Ingress Protection:	IEC 60529
Environmental (Cold):	IEC 60068-2-1
Environmental (Dry heat):	IEC 60068-2-2
Relative Humidity Cyclic:	IEC 60068-2-30
EFT:	IEEE/ANSI C37.90.1
ESD:	IEEE/ANSIC37.90.3
200.	1222/10/01/2013
CERTIFICATION	
ISO: Manufactured under	er an ISO9001 registered

 CSA/UL:
 UL508, UL1053, C22.2.No 14

 CE:
 Conforms to EN60255-5, EN50263

Please refer to Multilin 489 Generator Protection System Instruction Manual for complete technical specifications

Ordering

489	*	*	*	*	*	
Current Input Relays	P1				1	1 A phase CT secondaries
	P5					5 A phase CT secondaries
Power Supply Options		LO				DC: 24 - 60 V; AC: 20 - 48 V @ 48 - 62 Hz
		HI				DC: 90 – 300 V; AC: 70 – 265 V @ 48 – 62 Hz
Analogue Outputs			A1			0 - 1 mA analog outputs
			A20			4 – 20 mA analog outputs
Enhancements				E		Enhanced display, larger LCD, improved keypad
				Т		Enhanced display, larger LCD, improved keypad plus 10BaseT Ethernet Port
Environmental Protection					Н	Harsh (Chemical) Environment Conformal Coating

GEGridSolutions.com

IEC is a registered trademark of Commission Electrotechnique Internationale. IEEE is a registered trademark of the Institute of Electrical Electronics Engineers, Inc. Modbus is a registered trademark of Schneider Automation. NERC is a registered trademark of North American Electric Reliability Council. NIST is a registered trademark of the National Institute of Standards and Technology.

GE, the GE monogram, Multilin, FlexLogic, EnerVista and CyberSentry are trademarks of General Electric Company.

GE reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes.

Copyright 2017, General Electric Company. All Rights Reserved.

GEA-12947(E) English 170712